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Abstract. It is shown that by starting with a general form of the Peano kernel
theorem which makes no reference to the interchange of linear functionals and inte-
grals, the most general results can be obtained in an elementary manner. In particular,
we classify how the Peano kernels become increasingly smooth and satisfy boundary
(or equivalently moment) conditions as the linear functionals they represent become
continuous on wider classes of functions. These results are then used to give new repre-
sentations of the continuous duals of C"[a,b] and Wy [a,b], 1 < p < cc.

1. Introduction

Recall the formula for Taylor interpolation at a from Il (polynomials of degree < k)
together with integral remainder. For a sufficiently smooth function f defined on [a, b]

ZD’f / DEFLE() )+ dt, (1.1)

where ()’j_ is the truncated power function. Suppose that A is a linear functional which
vanishes on Il;. Then applying A to (1.1) gives

=1
)=\ /Dk“ k.)+ dt | . (1.2)

In these terms (following Peano’s paper [P13] on quadrature errors) the Peano kernel
theorem is usually stated (and proved) as follows.

Theorem 1.3 (Taylor error form). Suppose that A is a linear functional which vanishes
on Il;. Then under “certain conditions” on A it is possible to interchange \ with the integral

ff in (1.2) to obtain the representation

A(f) = / DMK (1) de. (1.4)
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for “suitable” f, where the Peano kernel K is given by

K(t) = %)\ ((—8)h), (1.5)

and sometimes (1.5) has to be interpreted in an “appropriate” way.

Representations of this type can also be found in the earlier work of Birkhoff [B06]. See
Sard [S63:p. 25], Davis [D75:p. 70], or Brass and Forster [BF98] for typical examples.

In this paper we take an alternative approach based on a factorisation theorem of func-
tional analysis. This is used in the form given by Theorem 2.2, which can be paraphrased
as follows:

If the linear functional A vanishes on 11, and is continuous on a certain space X
(i.e., satisfies “certain conditions”), then

Af) = Q(D*1f),  Vfe X (the “suitable” f),

and the (continuous) linear functional () can be represented by integration against
some kernel K, or more generally a measure (the “appropriate” interpretation).

The above measure can be constructed, and so this gives (1.4) and its variations thereof.
A key part of this result is that the correspondence between A and @) is 1-1. This allows us
to characterise the space of Peano kernels corresponding to functionals from a number of
continuous dual spaces X*, each of which can be interpreted as a subspace of (C**1[a, b])*.
The rest of the paper is set out as follows.

In Section 2, the general Peano kernel theorem (Theorem 2.2) is presented, together
with some technical lemmas which are needed in the applications of it.

In Section 3, these results are used to give a complete characterisation of the spaces
of Peano kernels corresponding to the nested subspaces of (C**1[a, b])*

(Cla,b)* € (CMa,b])* € -+ € (C*[a, b])*
(see Theorem 3.3), and
(Lyfa W) € WEa b € oo C (Woa )" € (Wi fab)',  1<p<oo

(see Theorem 3.19). In addition to becoming increasingly smooth (which is to be expected),
these spaces also satisfy certain boundary conditions. These boundary conditions are
related to certain moment and orthogonality conditions which are illustrated with some
familiar examples including B—splines.

In Section 4, the Peano kernel classification of Section 3 is used to give new represen-
tations of the continuous dual spaces of C"[a, b] and W[a,b], 1 < p < ooc.

2. The general Peano kernel theorem

The spaces X of “suitable” f (on which D¥*1 must be defined) will be subspaces of the
distributions D’(a,b). The corresponding continuous dual spaces X* will be interpreted
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as subspaces of (C¥*1[a,b])* in the following way. For each X we consider, C**1[a,b] is
a dense subset and the embedding map C**1[a,b] < X is continuous. This implies that
each A € X* is uniquely determined by its restriction to C**1[a, b], which is an element of
(C*+1la, b])*, and we write

X* c (C*a, b])*, (2.1)

etc, without further explanation. The general Peano kernel theorem is the following.

Theorem 2.2 (general form). Suppose that X C D'(a,b) is a space containing Ilj.
Then there is a 1-1 (linear) correspondence between the linear functionals A : X — IR
which vanish on TIj, and the linear functionals Q : Y — IR (Y := D¥*1X) given by the
representation

Af)=Q(DFf),  VfeX. (2.3)
Note that (2.3) defines Q. Further, if X and Y are given topologies for which

DFtl. X 5V

is a continuous open map, then the A € X* (which vanish on Ily) correspond to the
Q € Y* If X and Y are normed linear spaces, then A — ||Q|| is an equivalent norm on
those A € X™* which vanish on II.

As mentioned in the introduction, the 1-1 correspondence between the A € X* and
the (Peano kernels) @ € Y* is vital to our applications. This result is a special case of
the following quotient theorem of functional analysis, the first part of which is a simple
algebraic result (called the key lemma by some algebraists).

Theorem 2.4 (Quotient theorem). Suppose that U : X — Y is a linear map onto Y .
Then there is a 1-1 (linear) correspondence between the linear maps R : X — Z which
vanish on the kernel of U and the linear maps Q : Y — Z given by

R =0QolU.

Further, if X, Y, Z are topological vector spaces, and U is a continuous and open map
(maps open sets to open sets), then under this correspondence the continuous maps R
correspond to the continuous maps Q. If X, Y, Z are normed linear spaces and U is a
continuous open map, then

R =9 (2.5)

is an equivalent norm on those continuous linear maps R : X — Z which vanish on the
kernel of U.

Sard [S63:p. 311] gives a version of this quotient theorem for Banach spaces where U is
continuous. By the open mapping theorem (a continuous map from one Banach space onto
another is open) these assumptions imply that ¢ is open. The topological space version of
what is referred to there as Sard’s factorisation theorem is given by Atteia in [At92:p. 98]
(where the condition that & be an open map is built into the definition of homomorphism
used there). Neither of these results mentions the equivalence of norms (2.5), for which we
now provide a proof.



Proof (equivalence of norms): From R = Q ol we obtain
1R[] < [[Qllled]].
Since U is open, there exists an r > 0 for which
By C U(rBx),
where Bx, By are the unit balls in X, Y. Thus
1Q[| = sup [ QBy || < sup ||QU(rBx)|| < [[R|[sup [[rBx|| = [|R]|r,

which is the reverse inequality. O

Theorem 2.2 is obtained from Theorem 2.4 by taking:

R=M:X—>IR, U=D*"':X Y (which has kernel IT;).

Some examples and preliminary results

Taking X = C*+1[a,b] in Theorem 2.2 (cf Sard [S63:p.314]) gives a 1-1 correspon-
dence between A € (C**1[a,b])* and functions w € NBV][a,b] (normalised bounded varia-
tion on [a, b)), i.e., Riemann—Stieltjes measures, via

b
A= [ DM@, v e o, (2.6
The map A — Var(w) (the total variation of w) gives an equivalent norm on

{X € (C*1a,b])* : AM(I1;) = 0}.

This result is constructive, since a A of the form (2.6) can be applied to (- — t)’fﬁl whenever
t does not belong to
Jx k+1 1= the countable set of (jump) discontinuities of w, (2.7)

and in this way a function w € BV][a, b] satisfying (2.6) can be obtained via the calculation

w(t) = w(b) — ﬁx ((—O8Y), Ve d Ty, (2.8)
with the choice .
w(b) := 0 1)!)\ () +9), Vg € I, (2.9)

giving the (right continuous) w normalised to have w(a) = 0. Formally, A is not defined on
(-—t)k+t & C*+1[q, b] (for t # a,b), and the calculation (2.8) should be done by considering
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an appropriate sequence of approximations to (- — t)’f'1 (see [S63:p.139] for details). In
practice this is not necessary.

A typical example of linear functional A which requires the mass representation (2.6),
and not simply a kernel K, is

f e DFTLEE), € € a,bl.
However, if A € (C¥[a,b])* C (C**'[a,b])*, then (2.8) can be ‘differentiated’ to obtain the
representation (1.4), valid for f € C**1[a, b], where
1

K(t) := R (- —t)%) = Dw(®).
The corresponding space of Peano kernels K is not all of BV]a, b] (see Theorem 3.3 for the
general result), but rather a subspace of Li[a,b] (as the (1.4) implies it must be). This
space, which we denote by PK][a, ], is defined to be the space

PKla,b] := {w € BV][a, b] : w is right continuous on (a,b), w(a) =w(b) =0}  (2.10)

viewed as a subspace of Li[a,b]. We now verify that PKla,b] does define a subspace of
Li[a, b, indeed it is a subspace of L [a, b]. For w € PK]a, b}, ||w|/1_ja,p < Var(w), and so
w can be identified with an element [w] € Lyo[a, b]. This association is 1-1, since if w # v
at some point a < £ < b, then because w and v have only countably many discontinuities,

all of the first kind (removable or jump discontinuities), it follows that
[[w] = [W]llLcfap = im jw(z) —v(z)| = w(E) -0 ()] > 0.
r—Et

The spaces used in our Peano kernel classifications occur as antiderivatives of the
subspaces PK[a,b|, L,[a,b] C Li[a,b]. To obtain them we need the following technical
lemma.

Lemma 2.11. If Y :=Y[a,b] is a subspace of Li[a,b|, then

X =Y’ :=Y[a,b):={f €D'(a,b): DIf € Y}, j=0,1,2,... (2.12)
is a subspace of the Sobolev space Wf [a, b], and
DI Y Y
maps onto Y. In particular, Y =Y, while for j = 1,2,3,...,
Y7 = {f € C?""Ya,b] : D' f is absolutely continuous, D’ f € Y}. (2.13)

Proof: For subspaces Z C Y C Li[a,b], the definition (2.12) implies that Z7 C Y7.
Thus, to prove the rest of the result it is sufficient to show that (2.12) and (2.13) are
equivalent for the particular choice Y = L;a, b], where either of (2.12) or (2.13) is taken

as the definition of W7 [a,b] = Y7. We quickly sketch the proof of this well known result.
For f € Ly[a,b], the function F' defined by

F(x):= /mf(t) dt

is absolutely continuous with DF = f, and the only distributions with (distributional)
derivative f are F' plus a constant. Since the polynomials are absolutely continuous on
[a,b], each of the j — 1 additional antiderivatives is absolutely continuous, which shows

equivalence of both definitions of Wf [a, b]. O



Notice from the proof, that if w € Y71, then

K(t) := —/ w(&) d¢ (2.14)

defines a function K € Y7 with DK = —w (in Ly[a,b]). This will be a key fact in several
of our inductive arguments, which rely on integration by parts in the following form. If

the Riemann-Stieltjes integral f; f dw exists, then so does ff wdf, and

b
[ faw=15@pw) - fau) - [ wdr

The next lemma shows that the boundary conditions which occur in our classification
can be interpreted as certain moment conditions on the Peano kernel K. Let (-,-) be the
inner product

b
(f.9) :=/ f(t)g(t)dt.

Lemma 2.15. For kernels K € Wila,b], j =1,2,3,...,
(a) The boundary conditions

K(a)=DK(a)=---=D""'K(a)=0, K(b)=DK(b)=---=D'""K(b) =

imply the following:
(b) The moment conditions

b b b b
/DK(t)dt:/ tDzK(t)dtz/ t2D3K(t)dt:---=/ tI='DIK (t) dt = 0.

a

(¢) The orthogonality conditions

(D"K,T,_1) =0 r=1,2,...,7. (2.16)

3

For j > 2, the conditions (a) and (c) are equivalent.

Proof: The proof is by induction, using integration by parts in the form

b DK (t)g(t) dt

a

— DITTK (b)g(b) — DI K (a)g(a) —/ DITUK(t)Dg(t)dt, Vg eTl,_;.



3. A classification of the Peano kernels

In this section we use Theorem 2.2 to obtain a classification of the Peano kernels for
linear functionals from the subspaces of (C**+1[a, b])* given by

(C*I1a, b)), j=0,1,...,k, (3.1)

and .
(W[, B])*,  1<p<oo, j=0,1,....k+1. (3.2)

These satisfy the strict inclusions (by Sobolev’s embedding theorem)

(W3 la, b)) C(O* Il b)) SOV T abl), j =010k,

and (by Holder’s inequality)

(Wlﬁ—'—l_j[a? b])* g(WIi—l—l_j[a&b])*a 1< p1 < p2 <oC, ] = 07 1,... ’ k+1.

’

It is shown that as the space of linear functionals becomes more restrictive (the func-
tionals are continuous on wider classes of functions) the corresponding Peano kernels be-
come smoother and satisfy certain boundary (moment) conditions.

First we consider (3.1). The resulting Peano kernels are antiderivatives of functions
from the space PK|a, b] which (we recall) is

PKla,b] := {w € BV]a, b] : w is right continuous on (a,b), w(a) = w(b) = 0}
viewed as a subspace of Lo[a,b]. Let

PK’[a,b] := {f € D'(a,b) : D’ f € PK|[a, b]} j=0,1,2,....

Then (by Lemma 2.11), PK%[a, b] = PK]a, b], and for j > 1,
PK’[a,b] = {f € C?~'[a,b] : DI~ f is absolutely continuous, D’f € PK][a, b]}.
Notice that PK?[a,b] ¢ WJ_[a,b] C W{[a,b)].

Theorem 3.3. There is a 1-1 (linear) correspondence between the linear functionals
X e (C*Ia, b)), j=0,1,...,k
which vanish on I1;, and the functions
K € PK[a, b]
that satisfy (for j > 1) the boundary conditions

K(a)=DK(a)=---=D'"""'K(a)=0, K(b)=DK()=---=D""K(b) =



which is given by the representation
b
AP = [ DK@ v e O (3.4
or, equivalently, with D’ K € PK|a, b],
. b . . .
AH = (17 [ DI AR @), v € O ila,b (3.5)

Further, A ||K||1,[q,5) gives an equivalent norm on {\ € (C*~[a,b])* : A\(IIy) = 0}, and
K can be computed from

K(t) := %A ((=t%),  Vte I, (3.6)

where the countable set Jy ; defined by (2.7) is empty if A € (C*~1[a,b])*.

Proof: The proof is by (strong) induction on j and k.
First we prove the result for j = 0 and all k. By the example (2.6), there is a 1-1
correspondence between the A € (C*[a, b])* which vanish on TI_; and the w € NBVa, b]
given by

AF) :/ DEF() dw(t),  Vf € C¥a, b, (3.7)
where .
w(t) = wd) — ZA(C=D8). Vg T,
with .
w(b) = 15 (Y +g), VgeT. (3.8)

The norm of X is equivalent to ||K||z,[4), Which is the (total) variation of the function
giving the Riemann-Stieltjes measure K (t)dt. Since

d(D*f)(t) = D** f(t)dt, Vf e C*"a,b],
equation (3.7) can be integrated by parts to obtain

b
Mﬂ:/wamm
g (3.9)

b
= D* f(b)w(b) — D* f(a)w(a) - / DM f(w(t)dt,  Vf e C* M a,bl.
It follows from (3.9) that A vanishes on Il if and only if
A(()F/K) = w(b) — w(a) =0,
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i.e., if and only if
w(b) = w(a) =0,

and (3.9) then gives the 1-1 correspondence (3.4), where

K(t) = —w(t) = %A ((—0%),  vig T

Alternatively, it follows from (3.8) that A vanishes on Il if and only if w(b) = 0, and (3.7)
gives the 1-1 correspondence (3.5) (with the same definition of K).

Now suppose that the result is true for j—1, where 0 < j—1 < k—1. The induction hy-
pothesis gives a 1-1 correspondence between those A € (Ck¥~1=U=V[q, b))* = (C¥~[a, b])*
which vanish on TTj_; and the functions w € PK?™'[a, b] satisfying the boundary conditions

w(a) = Dw(a) = --- = D" 2w(a) = 0, w(b) = Dw(b) = --- = D' 2w(b) =0, (3.10)
which is given by .
AF) :/ DEf(w(t)dt,  Vf € CFla,b), (3.11)

or, equivalently, with D/~1w € PKla, b],
b
Af) = (—1)j/ DFUD p @) d(DI T w) (1), Ve CFTI U g, b, (3.12)

Let K € PK’[a,b] be the function defined by (2.14), i.e.,

which satisfies DK = —w, and

K(a) = — /aw(g) dg = 0.

This K satisfies all the boundary conditions of the theorem except K (b) = 0. The linear
functional A defined by (3.11) vanishes on Il if and only if

b
K0) = [ w0 = 2 () =0

Since (3.12) can be rewritten as

Mﬁzew*/D“W@ammw, Vi € R0,

a

where DK = —D’~lw € PKla, b], this gives the 1-1 correspondence (3.5). Integrating
(3.11) by parts gives (3.4). O



The boundary conditions satisfied by the Peano kernel K above are related to cer-
tain moment and orthogonality conditions as detailed in Lemma 2.15. Now we illustrate
Theorem 3.3 with some examples.

Example 1. The error in Simpson’s (quadrature) rule

(b—a)
6

b
A= [ s a- {ﬂ@+4ﬂ“+%+fw%, (3.13)

2

which defines a A € (Cla, b])* that vanishes on II3 (the cubics). By Theorem 3.3, the Peano
kernel K € PK*[a,b] € W2 [a,b] C C?[a,b] and satisfies the boundary conditions

K(a) = DK(a) = D*K(a) =0,  K(b)= DK(b) = D*K(b) =0,
or, equivalently, the moment (orthogonality) conditions
(DK, M) = (D*K,TI;) = (D*K,TI,) = 0.

Using (3.6), the kernel K can be computed explicitly as

1 1 ((t—a)®((a+2b)—3t), a<t<atl
Kt):==X((--0})=—-= RS 3.14
(1) = g2 (( = 1)) 72{(b—t)3(3t—(2a+b)), ap <y cp, G
The corresponding D3K € PKla, b] in the representation (3.5), i.e.,
b
A= [ 10 AP K@), i € Clad, (3.15)
is given by
0, t=a
b—a )1, a<t<2t
3 o ’ 2
D°K(t)=t—a 5, b << (3.16)
6, t—b

Notice that (3.15) is simply a restatement of (3.13). In general, by (2.8), the function
DJK € PKla, b] occuring in (3.5) can be computed from

CDITDIK() = ot M (5 - A (- 0T) . Ve Dy (317)

(k= J)!



Fig. 3.1. The Peano kernel (and its derivatives) for Simpson’s rule.
Note that K (¢) = DK (§) = D?2K(£) =0, £ € {a,b}, and D3K € PK][a, b].

Example 2. The divided difference at k + 2 distinct points
a<zo<T < <Tp<Tp41 <D

given by
k41
f(z;)

Af) == [xo, z1, ... 1] f = Z o, (o — s

which defines a A € (Cla, b])* that vanishes on II;. The corresponding Peano kernel is
K=M:=M(:|zo,...,Tks1)

the normalised B—spline of degree k with knot sequence zg < 1 < -+ < xg41, namely

Several well known properties of B—splines follow immediately from Theorem 3.3. For
example, M € PK*[a,b] ¢ WE [a,b] ¢ C*~'[a,b], its support is contained in [zq, Tg41]
and it satisfies the boundary conditions

’

M(¢) = DM(§) =--- =D 'M(&) =0, ¢ € {wo,xx41}.
Less well known are the orthogonality conditions (see Burchard [Bu73])
(D'M,T,_1) =0, r=1,2,....k (3.18)
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which follow from Lemma 2.15.

- M T DM

Fig. 3.2. The cubic B-spline M := M(-|xq,...,x4) with equally spaced knots
z;:=a+ j(b—a)/4 (and its derivatives), with D3M € PK|a, b]

As a second application of Theorem 2.2 we consider the Peano kernels corresponding
to the linear functionals (3.2). Note that W}[a,b] C W{la,b].

Theorem 3.19. Let 1 < p < oo, and q := p* (the conjugate exponent). There is a 1-1
(linear) correspondence between the linear functionals

A€ (Wht=ia, b)), j=0,1,...,k+1

which vanish on II;, and the functions

K € W/[a,b]
that satisfy (for j > 1) the boundary conditions
K(a)=DK(a)=---=D'"'K(a) =0, K(b)=DK(b)=---=D"'K(b)=0
which is given by
b
Af) = / DMKt dt,  Yf € WEHa, 1], (3.20)
or, equivalently,
b
M) = (-1)3‘/ DM FODIK () . Vf € WHHIa b, (3.21)
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Further, A — ||K||1, a5 gives an equivalent norm on {A € (W}F+1=7[a,b])* : A(II;) = 0}.

Proof: The proof is by (strong) induction on j and k.
First we prove the result for 5 = 0 and all k. Let X = WI’f’Ll[a, b], 1 < p < oo, in Theorem
2.2. By Lemma 2.11, D¥*! : WF+ta,b] — Ly[a,b] is a continuous linear map onto
Y = L,[a,b], which (by the open mapping theorem) is an open map. Thus, there is a 1-1
correspondence between the A € (W) T![a, b])* that vanish on ITj, and the Q € (Ly|a, b])*
given by (2.3). The standard representation for continuous linear functionals on Ly |a, b]
as integration against Lg,[a, b]-functions then gives (3.20) and (3.21). The equivalence of
norms is (2.5). In fact, from the proof of (2.5) it follows that with the usual norm on
W}t [a, b] these norms are equal (since [|[DF*!| =1 and r = 1).

Now suppose that the result is true for 7 — 1, where 0 < 7 — 1 < k. The induction hy-
pothesis gives a 1-1 correspondence between those A € (Wzlf_(j_l) [a,b])* = (Wt~ a, b))
that vanish on IT;_; and the functions w € ij_l[a, b] satisfying the boundary conditions

w(a) = Dw(a) = --- = D" 2w(a) = 0, w(b) = Dw(b) = --- = D' 2w(b) =0, (3.22)
which is given by
b
A= [ DRpuan vf e Whab) (3.23)
or, equivalently,
b
Af) = (—1)3'—1/ DU p) DI w(t)dt,  Vf e WEU"D[q,b]. (3.24)

Let K € Wg [a, b] be the function defined by (2.14), which satisfies DK = —w, and

K(a) = —/aw(g) dg = 0. (3.25)

By (3.22) and (3.25), this K € W/ [a, b] satisfies all the boundary conditions of the theorem
except K (b) = 0. The linear functional A defined by (3.23) vanishes on Il if and only if

K@) = [ ) =A(()/k) =0

Since (3.24) can be rewritten as

b
AP = (-7 [ DI ODIR (@t E € WETi 0,
this gives the 1-1 correspondence (3.21). Integrating (3.23) by parts gives the 1-1 corre-
spondence (3.20). O

As before, the Peano kernel K above satisfies the moment and orthogonality conditions
as described by Lemma 2.15. The only statement of the Peano kernel theorem which strives
for the generality of Sobolev spaces that the author is aware of is in the recent monograph
[BHS93:p. 28].

To summarise the classification of this section, we now give a diagram showing the sub-
spaces of (C**1[a, b])* considered, together with the smoothness class of the corresponding
Peano kernels and the boundary conditions which they satisfy.
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Peano kernel classification subspace diagram

Here is a diagram showing subspaces X* C (CK*1[a,b])*, the smoothness class of the
corresponding Peano kernels (for A € X™* vanishing on Il), and the boundary conditions satisfied
by the Peano kernels K (if any). Here 1 < p < o0, 1 < p; < p2 < o0, with 1 < ¢ < o0,
1 < g2 < q1 < 00 the corresponding conjugate indices, and 7 = 0,1, ..., k. All of the inclusions

indicated by 1 are strict.

Subspaces of Smoothness class Boundary conditions satisfied by
(C*+1a, b])* of Peano kernels the corresponding Peano kernels
(Wy+a, b))* Lqla, b]
T T
(C*[a, b])* PK]a, b]
T
(e o | =
(o)’ PK'[a,b] K(b)=0
(W13 a. )" Wi la. 0]
1 K(a)=---= DI"'K(a) =0
(ngcl-l—l_J [CL, b])* ng [CL, b] } —...—= i1 —
i K(b) = =Di"'K(b) =0
(C*~ia, b])* PK[a, 0]
(W][i—;\[a, b])* Wg;—l[a b] } K(G) - = DJK(G) =0
(Wil Wi a, b Kp)=---=DIK(b)=0
: ;
(WpQ[aa b))* Wé“_l[a,b] K(a) = = DF=2K(a) = 0
(Cfl[/ar7 b])* PKk—Tl [0,, b] } K(b) = = Dk_QK(b) 0
T
(%3 G | == Do
(Claty PK¥[a, b K(b) == DK () =0
(Lyfa ) Wit e ST DR =)
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4. Representations of the continuous duals of C"[a.b] and W] a,b]

In this section we briefly indicate how the Peano kernel representations of Section 3
can be used to represent the continuous dual X* of

X =C"[a,b], X =W/[a,b], >0, 1<p<oo.

The basic argument is that if pg, ..., ur € X* are linearly independent over Il C X,
i.e., there exists a (unique) linear projector onto ITj of the form

k
P:ZpiuiiX—)Hk-, (pi € ),
i=0
then the map
Z:X* =R x X*nAnn(Ty) : A= (Api)fg, A= Ao P) (4.1)

is an isomorphism between Banach spaces (i.e., a linear bijection which is a homeomor-
phism), and for short we write

X* = RM x X* 0 Ann(TTy).

Here X* N Ann(Il;) denotes the closed subspace of X* which annihilates ITg. It is easily
shown that Z is a 1-1, onto, and continuous linear map between Banach spaces. The

continuity of Z=! follows from the open mapping theorem.
First let X = C"[a,b], and choose k > r > 0. Then

3

(C"[a,b))* = R x (C"[a, b])* N Ann(ITy,) (4.2)

’

and using the representation for (C"[a, b])* N Ann(Il;) given by Theorem 3.3 one obtains:
Theorem 4.3 (Representation of (C"[a,b])*). Let

HO?"'7uk€(CT[a7b])*7 kZTZ(L

be linearly independent over 11y, with p; € 1l the dual polynomials, and P := Zf:o i i -
Then each linear functional A € (C"[a,b])* has a unique representation of the form

k b
A(f) = Zcmi(f) + (—1)'“_’“_1/ D" f(t)d(D*TK)(t),  VfeCT[ab],  (4.4)

where ¢; € R, K € PK*"[a,b] (with D*""K € PK[a,b] above), and K satisfies (for
k —r > 1) the boundary conditions

K(a)=---=D*""1K(@a)=0, K()=---=D""1K(b) =0.

15



Further, ||\]| is equivalent to

k b k
Z@+/Kmﬁ=ZQ+WMwy (4.5)
i=0 a i=0

In this representation

K(t)=—=A—-XoP)((-—t)%), Yt & Jx—xoPk

and (4.4) can be replaced by

k b
NP =Y em(f)+ [ DO @ b, (1.6)

1=0

whenever f € C**[a, b].

Proof: Since A — A o P vanishes on II;, and

k

A =XoP)f = A(f) = D Apa)mi(f) = MF) = Y caps(f).

1=0 1=0

Theorem 3.3 can be applied to A — XA o P to obtain (4.4) and (4.6). The equivalence of
norms (4.5) follows from the isomorphism (4.2). Indeed, if C"[a, b] is given the (equivalent)
norm

||f|| = l’IlaX{|’LLZ(f) vl= 07 SO k7 ||Drf||Loo[a,b]}7

then [|A|| is precisely (4.5) (c¢f Conway [C85:Ex. 5,p. 80]). O

The representation for (C"[a, b])* that is obtained by instead using the representation
of (C"[a,b])* N Ann(Il;) given by (2.6), i.e.,
(C**1a,b))* = R x NBV]|a, b]

3

is well known (see, e.g., [C85:Ex. 6,p. 80] or [S63:p. 139]).
In a similar way, by choosing X = W[a,b], 1 <p < o0, k+1>r >0, it follows that

(W) la,b))* = R* x (W) a, b])* N Ann(ITy), (4.7)

and the representation for (Wj[a,b])* N Ann(Il;) of Theorem 3.19 gives:

16



Theorem 4.8 (Representation of (W [a,b])*). Let
oo € (Wa b)), 1<p<oo, k+1>r>0,

be linearly independent over 11y, with p; € 1l the dual polynomials, and P := Zf:o i hi -
Then each linear functional A € (W [a,b])* has a unique representation of the form

k b
Mf) =D camlf) + (=1)FF7 / D" f(O) DMK (8 dt, Ve Wyla,b],  (4.9)
i=0 a
where ¢; € R, and K € W=7 [a,b] (q := p*) satisfies (for k+1—r >1)
K(a)=---=D""K(a)=0, K(@)=---=D*"K(@)=0.

Further, ||\|| is equivalent to

k b 1/q
(Zc,.m/ |K(t)|th) | (4.10)

In this representation
Ci:)\(pi), i:O,...,k,

and K is the Peano kernel for A — Ao P (in terms of D¥+1).

Proof: As for Theorem 4.8, but using (4.7). If W}[a, b] is given the (equivalent) norm

k b 1/p
I1+= (meu / D’“f(t)lpdt> ,

then ||A|| is precisely (4.10) (cf [C85:Ex. 4, p. 80]). O
Taking 7 = k + 1 in Theorem 4.8 gives

(WEHa, b))* = R¥ x Lg[a, b].

In Adams [A75:Th. 3.8, p. 48] there is a representation of (W (Q2))*, for Q a domain in
IR". This nonconstructive result is of a different nature to that of (4.9).

Concluding remarks

The use of distribution theory allows additional statements about the smoothness of
Peano kernels to be made. For instance, if (¢, d) C (a,b) does not intersect the support of
A, then K|(c7d) is a polynomial of degree < k. The techniques developed here could also b_e
used to classify the Peano kernels for other spaces X, in particular those of the form Y7,
Y C Li[a,b], together with the corresponding representations of (Y7)* (cf this section).

17



Acknowledgements

This work was supported by the Israel Council for Higher Education. 1 would like

to thank Warren Moors for a helpful discussion about equivalent norms, and Giuseppe
Rodriguez for his help in translating the early work of Peano on quadrature errors and
their Peano kernel representations.

[AT75]
[At92]

[BO6]

[BHS93]

[BF98]

[Bu73]

[O85]
[D75]
[P13]

S63]

References

Adams, R. A.(1975): Sobolev spaces. Academic Press, New York

Attéia, M.(1992): Hilbertian Kernels and Spline Functions. Elsevier Science Publish-
ers, Amsterdam

Birkhoff, G. D.(1906): General mean value and remainder theorems with applications
to mechanical differentiation and quadrature. Trans. Amer. Math. Soc. 7, 107-136
Bojanov, B. D., H. A. Hakopian, and A. A. Sahakian(1993): Spline Functions and
Multivariate Interpolations. Kluwer Academic Publishers, Dordrecht, The Nether-
lands

Brass, H. and Klaus-Jiirgen Forster(1998): On the application of the Peano represen-
tation of linear functionals in numerical analysis. In: Milovanovic, G.V., ed, Recent
Progress in Inequalities, 175-202. Kluwer Academic Publishers, Dordrecht
Burchard, H. G.(1973): Extremal positive splines with applications to interpolation
and approximation by generalized convex functions. Bull. Amer. Math. Soc. 79(5),
959-963

Conway, J. B.(1995): A course in Functional Analysis. Springer—Verlag, New York
Davis, P. J.(1975): Interpolation and Approximation. Dover, New York

Peano, G.(1913): Resto nelle formule di quadratura espresso con un integralo definito.
Atti della reale Acad. dei Lincei, Rendiconti (5) 22, 562-569

Sard, A.(1963): Linear approximation. Math. Survey 9, AMS, Providence

18



