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for \suitable" f , where the Peano kernel K is given byK(t) := 1k!� �(� � t)k+� ; (1:5)and sometimes (1.5) has to be interpreted in an \appropriate" way.Representations of this type can also be found in the earlier work of Birkho� [B06]. SeeSard [S63:p. 25], Davis [D75:p. 70], or Brass and F�orster [BF98] for typical examples.In this paper we take an alternative approach based on a factorisation theorem of func-tional analysis. This is used in the form given by Theorem 2.2, which can be paraphrasedas follows:If the linear functional � vanishes on �k, and is continuous on a certain space X(i.e., satis�es \certain conditions"), then�(f) = Q(Dk+1f); 8f 2 X (the \suitable" f);and the (continuous) linear functional Q can be represented by integration againstsome kernel K, or more generally a measure (the \appropriate" interpretation).The above measure can be constructed, and so this gives (1.4) and its variations thereof.A key part of this result is that the correspondence between � and Q is 1{1. This allows usto characterise the space of Peano kernels corresponding to functionals from a number ofcontinuous dual spaces X�, each of which can be interpreted as a subspace of (Ck+1[a; b])�.The rest of the paper is set out as follows.In Section 2, the general Peano kernel theorem (Theorem 2.2) is presented, togetherwith some technical lemmas which are needed in the applications of it.In Section 3, these results are used to give a complete characterisation of the spacesof Peano kernels corresponding to the nested subspaces of (Ck+1[a; b])�(C[a; b])� � (C1[a; b])� � � � � � (Ck[a; b])�(see Theorem 3.3), and(Lp[a; b])� � (W 1p [a; b])� � � � � � (W kp [a; b])� � (W k+1p [a; b])�; 1 � p <1(see Theorem 3.19). In addition to becoming increasingly smooth (which is to be expected),these spaces also satisfy certain boundary conditions. These boundary conditions arerelated to certain moment and orthogonality conditions which are illustrated with somefamiliar examples including B{splines.In Section 4, the Peano kernel classi�cation of Section 3 is used to give new represen-tations of the continuous dual spaces of Cr[a; b] and W rp [a; b], 1 � p <1.2. The general Peano kernel theoremThe spaces X of \suitable" f (on which Dk+1 must be de�ned) will be subspaces of thedistributions D0(a; b). The corresponding continuous dual spaces X� will be interpreted2



as subspaces of (Ck+1[a; b])� in the following way. For each X we consider, Ck+1[a; b] isa dense subset and the embedding map Ck+1[a; b] ,! X is continuous. This implies thateach � 2 X� is uniquely determined by its restriction to Ck+1[a; b], which is an element of(Ck+1[a; b])�, and we write X� � (Ck+1[a; b])�; (2:1)etc, without further explanation. The general Peano kernel theorem is the following.Theorem 2.2 (general form). Suppose that X � D0(a; b) is a space containing �k.Then there is a 1{1 (linear) correspondence between the linear functionals � : X ! IRwhich vanish on �k and the linear functionals Q : Y ! IR (Y := Dk+1X) given by therepresentation �(f) = Q(Dk+1f); 8f 2 X: (2:3)Note that (2.3) de�nes Q. Further, if X and Y are given topologies for whichDk+1 : X ! Yis a continuous open map, then the � 2 X� (which vanish on �k) correspond to theQ 2 Y �. If X and Y are normed linear spaces, then � 7! kQk is an equivalent norm onthose � 2 X� which vanish on �k.As mentioned in the introduction, the 1{1 correspondence between the � 2 X� andthe (Peano kernels) Q 2 Y � is vital to our applications. This result is a special case ofthe following quotient theorem of functional analysis, the �rst part of which is a simplealgebraic result (called the key lemma by some algebraists).Theorem 2.4 (Quotient theorem). Suppose that U : X ! Y is a linear map onto Y .Then there is a 1{1 (linear) correspondence between the linear maps R : X ! Z whichvanish on the kernel of U and the linear maps Q : Y ! Z given byR = Q � U :Further, if X, Y , Z are topological vector spaces, and U is a continuous and open map(maps open sets to open sets), then under this correspondence the continuous maps Rcorrespond to the continuous maps Q. If X, Y , Z are normed linear spaces and U is acontinuous open map, then R 7! kQk (2:5)is an equivalent norm on those continuous linear maps R : X ! Z which vanish on thekernel of U .Sard [S63:p. 311] gives a version of this quotient theorem for Banach spaces where U iscontinuous. By the open mapping theorem (a continuous map from one Banach space ontoanother is open) these assumptions imply that U is open. The topological space version ofwhat is referred to there as Sard's factorisation theorem is given by Atteia in [At92:p. 98](where the condition that U be an open map is built into the de�nition of homomorphismused there). Neither of these results mentions the equivalence of norms (2.5), for which wenow provide a proof. 3



Proof (equivalence of norms): From R = Q � U we obtainkRk � kQkkUk:Since U is open, there exists an r > 0 for whichBY � U(rBX);where BX , BY are the unit balls in X, Y . ThuskQk = sup kQBY k � sup kQU(rBX)k � kRk sup krBXk = kRkr;which is the reverse inequality.Theorem 2.2 is obtained from Theorem 2.4 by taking:R = � : X ! IR; U = Dk+1 : X ! Y (which has kernel �k):Some examples and preliminary resultsTaking X = Ck+1[a; b] in Theorem 2.2 (cf Sard [S63:p. 314]) gives a 1{1 correspon-dence between � 2 (Ck+1[a; b])� and functions w 2 NBV[a; b] (normalised bounded varia-tion on [a; b]), i.e., Riemann{Stieltjes measures, via�(f) = Z ba Dk+1f(t) dw(t); 8f 2 Ck+1[a; b]: (2:6)The map � 7! Var(w) (the total variation of w) gives an equivalent norm onf� 2 (Ck+1[a; b])� : �(�k) = 0g:This result is constructive, since a � of the form (2.6) can be applied to (�� t)k+1+ whenevert does not belong toJ�;k+1 := the countable set of (jump) discontinuities of w; (2:7)and in this way a function w 2 BV[a; b] satisfying (2.6) can be obtained via the calculationw(t) := w(b)� 1(k + 1)!� �(� � t)k+1+ )� ; 8t 62 J�;k+1; (2:8)with the choice w(b) := 1(k + 1)!� �(�)k+1 + g� ; 8g 2 �k (2:9)giving the (right continuous) w normalised to have w(a) = 0. Formally, � is not de�ned on(��t)k+1+ 62 Ck+1[a; b] (for t 6= a; b), and the calculation (2.8) should be done by considering4



an appropriate sequence of approximations to (� � t)k+1+ (see [S63:p. 139] for details). Inpractice this is not necessary.A typical example of linear functional � which requires the mass representation (2.6),and not simply a kernel K, is f 7! Dk+1f(�); � 2 [a; b]:However, if � 2 (Ck[a; b])� � (Ck+1[a; b])�, then (2.8) can be `di�erentiated' to obtain therepresentation (1.4), valid for f 2 Ck+1[a; b], whereK(t) := 1k!� �(� � t)k+� = Dw(t):The corresponding space of Peano kernels K is not all of BV[a; b] (see Theorem 3.3 for thegeneral result), but rather a subspace of L1[a; b] (as the (1.4) implies it must be). Thisspace, which we denote by PK[a; b], is de�ned to be the spacePK[a; b] := fw 2 BV[a; b] : w is right continuous on (a; b); w(a) = w(b) = 0g (2:10)viewed as a subspace of L1[a; b]. We now verify that PK[a; b] does de�ne a subspace ofL1[a; b], indeed it is a subspace of L1[a; b]. For w 2 PK[a; b], kwkL1[a;b] � Var(w), and sow can be identi�ed with an element [w] 2 L1[a; b]. This association is 1{1, since if w 6= vat some point a < � < b, then because w and v have only countably many discontinuities,all of the �rst kind (removable or jump discontinuities), it follows thatk[w]� [v]kL1[a;b] � limx!�+ jw(x)� v(x)j = jw(�)� v(�)j > 0:The spaces used in our Peano kernel classi�cations occur as antiderivatives of thesubspaces PK[a; b]; Lp[a; b] � L1[a; b]. To obtain them we need the following technicallemma.Lemma 2.11. If Y := Y [a; b] is a subspace of L1[a; b], thenX = Y j := Y j [a; b] := ff 2 D0(a; b) : Djf 2 Y g; j = 0; 1; 2; : : : (2:12)is a subspace of the Sobolev space W j1 [a; b], andDj : Y j ! Ymaps onto Y . In particular, Y 0 = Y; while for j = 1; 2; 3; : : :,Y j = ff 2 Cj�1[a; b] : Dj�1f is absolutely continuous; Djf 2 Y g: (2:13)Proof: For subspaces Z � Y � L1[a; b], the de�nition (2.12) implies that Zj � Y j .Thus, to prove the rest of the result it is su�cient to show that (2.12) and (2.13) areequivalent for the particular choice Y = L1[a; b], where either of (2.12) or (2.13) is takenas the de�nition of W j1 [a; b] = Y j . We quickly sketch the proof of this well known result.For f 2 L1[a; b], the function F de�ned byF (x) := Z xa f(t) dtis absolutely continuous with DF = f , and the only distributions with (distributional)derivative f are F plus a constant. Since the polynomials are absolutely continuous on[a; b], each of the j � 1 additional antiderivatives is absolutely continuous, which showsequivalence of both de�nitions of W j1 [a; b]. 5



Notice from the proof, that if w 2 Y j�1, thenK(t) := � Z ba w(�) d� (2:14)de�nes a function K 2 Y j with DK = �w (in L1[a; b]). This will be a key fact in severalof our inductive arguments, which rely on integration by parts in the following form. Ifthe Riemann{Stieltjes integral R ba f dw exists, then so does R ba w df , andZ ba f dw = [f(b)w(b)� f(a)w(a)]� Z ba w df:The next lemma shows that the boundary conditions which occur in our classi�cationcan be interpreted as certain moment conditions on the Peano kernel K. Let h�; �i be theinner product hf; gi := Z ba f(t)g(t) dt:Lemma 2.15. For kernels K 2W j1 [a; b], j = 1; 2; 3; : : :,(a) The boundary conditionsK(a) = DK(a) = � � � = Dj�1K(a) = 0; K(b) = DK(b) = � � � = Dj�1K(b) = 0 :imply the following:(b) The moment conditionsZ ba DK(t) dt = Z ba tD2K(t) dt = Z ba t2D3K(t) dt = � � � = Z ba tj�1DjK(t) dt = 0:(c) The orthogonality conditionshDrK;�r�1i = 0; r = 1; 2; : : : ; j: (2:16)For j � 2, the conditions (a) and (c) are equivalent.Proof: The proof is by induction, using integration by parts in the formZ ba DjK(t)g(t) dt= Dj�1K(b)g(b)�Dj�1K(a)g(a)� Z ba Dj�1K(t)Dg(t) dt; 8g 2 �j�1:
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3. A classi�cation of the Peano kernelsIn this section we use Theorem 2.2 to obtain a classi�cation of the Peano kernels forlinear functionals from the subspaces of (Ck+1[a; b])� given by(Ck�j [a; b])�; j = 0; 1; : : : ; k; (3:1)and (W k+1�jp [a; b])�; 1 � p <1; j = 0; 1; : : : ; k + 1: (3:2)These satisfy the strict inclusions (by Sobolev's embedding theorem)(W k�jp [a; b])��6=(Ck�j [a; b])��6=(W k+1�jp [a; b])�; j = 0; 1; : : : k;and (by H�older's inequality)(W k+1�jp1 [a; b])��6=(W k+1�jp2 [a; b])�; 1 � p1 < p2 <1; j = 0; 1; : : : ; k + 1:It is shown that as the space of linear functionals becomes more restrictive (the func-tionals are continuous on wider classes of functions) the corresponding Peano kernels be-come smoother and satisfy certain boundary (moment) conditions.First we consider (3.1). The resulting Peano kernels are antiderivatives of functionsfrom the space PK[a; b] which (we recall) isPK[a; b] := fw 2 BV[a; b] : w is right continuous on (a; b); w(a) = w(b) = 0gviewed as a subspace of L1[a; b]. LetPKj [a; b] := ff 2 D0(a; b) : Djf 2 PK[a; b]g; j = 0; 1; 2; : : : :Then (by Lemma 2.11), PK0[a; b] = PK[a; b], and for j � 1,PKj [a; b] = ff 2 Cj�1[a; b] : Dj�1f is absolutely continuous; Djf 2 PK[a; b]g:Notice that PKj [a; b] �W j1[a; b] �W j1 [a; b].Theorem 3.3. There is a 1{1 (linear) correspondence between the linear functionals� 2 (Ck�j [a; b])�; j = 0; 1; : : : ; kwhich vanish on �k and the functionsK 2 PKj [a; b]that satisfy (for j � 1) the boundary conditionsK(a) = DK(a) = � � � = Dj�1K(a) = 0; K(b) = DK(b) = � � � = Dj�1K(b) = 07



which is given by the representation�(f) = Z ba Dk+1f(t)K(t) dt; 8f 2 Ck+1[a; b]; (3:4)or, equivalently, with DjK 2 PK[a; b];�(f) = (�1)j�1 Z ba Dk�jf(t) d(DjK)(t); 8f 2 Ck�j [a; b]: (3:5)Further, � 7! kKkL1[a;b] gives an equivalent norm on f� 2 (Ck�j [a; b])� : �(�k) = 0g, andK can be computed fromK(t) := 1k!� �(� � t)k+� ; 8t 62 J�;k; (3:6)where the countable set J�;k de�ned by (2.7) is empty if � 2 (Ck�1[a; b])�.Proof: The proof is by (strong) induction on j and k.First we prove the result for j = 0 and all k. By the example (2.6), there is a 1{1correspondence between the � 2 (Ck[a; b])� which vanish on �k�1 and the w 2 NBV[a; b]given by �(f) = Z ba Dkf(t) dw(t); 8f 2 Ck[a; b]; (3:7)where w(t) := w(b)� 1k!� �(� � t)k+� ; 8t 62 J�;k;with w(b) := 1k!� �(�)k + g� ; 8g 2 �k�1: (3:8)The norm of � is equivalent to kKkL1[a;b], which is the (total) variation of the functiongiving the Riemann{Stieltjes measure K(t)dt. Sinced(Dkf)(t) = Dk+1f(t)dt; 8f 2 Ck+1[a; b];equation (3.7) can be integrated by parts to obtain�(f) = Z ba Dkf(t) dw(t)= Dkf(b)w(b)�Dkf(a)w(a)� Z ba Dk+1f(t)w(t) dt; 8f 2 Ck+1[a; b]: (3:9)It follows from (3.9) that � vanishes on �k if and only if� �(�)k=k!� = w(b)� w(a) = 0;8



i.e., if and only if w(b) = w(a) = 0;and (3.9) then gives the 1{1 correspondence (3.4), whereK(t) := �w(t) = 1k!� �(� � t)k+� ; 8t 62 J�;k:Alternatively, it follows from (3.8) that � vanishes on �k if and only if w(b) = 0, and (3.7)gives the 1{1 correspondence (3.5) (with the same de�nition of K).Now suppose that the result is true for j�1, where 0 � j�1 � k�1. The induction hy-pothesis gives a 1{1 correspondence between those � 2 (Ck�1�(j�1)[a; b])� = (Ck�j [a; b])�which vanish on �k�1 and the functions w 2 PKj�1[a; b] satisfying the boundary conditionsw(a) = Dw(a) = � � � = Dj�2w(a) = 0; w(b) = Dw(b) = � � � = Dj�2w(b) = 0; (3:10)which is given by �(f) = Z ba Dkf(t)w(t) dt; 8f 2 Ck[a; b]; (3:11)or, equivalently, with Dj�1w 2 PK[a; b],�(f) = (�1)j Z ba Dk�1�(j�1)f(t) d(Dj�1w)(t); 8f 2 Ck�1�(j�1)[a; b]: (3:12)Let K 2 PKj [a; b] be the function de�ned by (2.14), i.e.,K(t) := � Z ta w(�) d�;which satis�es DK = �w, and K(a) := � Z aa w(�) d� = 0:This K satis�es all the boundary conditions of the theorem except K(b) = 0. The linearfunctional � de�ned by (3.11) vanishes on �k if and only ifK(b) = Z ba w(t) = 1k!� �(�)k� = 0:Since (3.12) can be rewritten as�(f) = (�1)j�1 Z ba Dk�jf(t) d(DjK)(t); 8f 2 Ck+1�j [a; b];where DjK = �Dj�1w 2 PK[a; b], this gives the 1{1 correspondence (3.5). Integrating(3.11) by parts gives (3.4). 9



The boundary conditions satis�ed by the Peano kernel K above are related to cer-tain moment and orthogonality conditions as detailed in Lemma 2.15. Now we illustrateTheorem 3.3 with some examples.Example 1. The error in Simpson's (quadrature) rule�(f) := Z ba f(t) dt� (b� a)6 �f(a) + 4f�a+ b2 �+ f(b)� ; (3:13)which de�nes a � 2 (C[a; b])� that vanishes on �3 (the cubics). By Theorem 3.3, the Peanokernel K 2 PK3[a; b] �W 31[a; b] � C2[a; b] and satis�es the boundary conditionsK(a) = DK(a) = D2K(a) = 0; K(b) = DK(b) = D2K(b) = 0;or, equivalently, the moment (orthogonality) conditionshDK;�0i = hD2K;�1i = hD3K;�2i = 0:Using (3.6), the kernel K can be computed explicitly asK(t) := 13!� �(� � t)3+� = � 172 � (t� a)3 ((a+ 2b)� 3t) ; a � t � a+b2(b� t)3 (3t� (2a+ b)) ; a+b2 � t � b: (3:14)The corresponding D3K 2 PK[a; b] in the representation (3.5), i.e.,�(f) = Z ba f(t) d(D3K)(t); 8f 2 C[a; b]; (3:15)is given by D3K(t) = t� a� b� a6 8><>: 0; t = a1; a < t < a+b25; a+b2 � t < b6; t = b. (3:16)Notice that (3.15) is simply a restatement of (3.13). In general, by (2.8), the functionDjK 2 PK[a; b] occuring in (3.5) can be computed from(�1)j�1DjK(t) = 1(k � j)!� �(�)k�j�� 1(k � j)!��(� � t)k�j+ � ; 8t 2 J�;k�j : (3:17)10



K DK
D2K D3K

Fig. 3.1. The Peano kernel (and its derivatives) for Simpson's rule.Note that K(�) = DK(�) = D2K(�) = 0, � 2 fa; bg, and D3K 2 PK[a; b].Example 2. The divided di�erence at k + 2 distinct pointsa � x0 < x1 < � � � < xk < xk+1 � bgiven by �(f) := [x0; x1; : : : xk+1]f := k+1Xj=0 f(xj)Qi6=j(xj � xi) ;which de�nes a � 2 (C[a; b])� that vanishes on �k. The corresponding Peano kernel isK =M :=M(�jx0; : : : ; xk+1)the normalised B{spline of degree k with knot sequence x0 < x1 < � � � < xk+1, namelyM(t) := [x0; : : : ; xk+1]�(� � t)k+�:Several well known properties of B{splines follow immediately from Theorem 3.3. Forexample, M 2 PKk[a; b] � W k1[a; b] � Ck�1[a; b], its support is contained in [x0; xk+1],and it satis�es the boundary conditionsM(�) = DM(�) = � � � = Dk�1M(�) = 0; � 2 fx0; xk+1g:Less well known are the orthogonality conditions (see Burchard [Bu73])hDrM;�r�1i = 0; r = 1; 2; : : : ; k; (3:18)11



which follow from Lemma 2.15.M DM
D2M D3M

Fig. 3.2. The cubic B{spline M := M(�jx0; : : : ; x4) with equally spaced knotsxj := a+ j(b� a)=4 (and its derivatives), with D3M 2 PK[a; b]As a second application of Theorem 2.2 we consider the Peano kernels correspondingto the linear functionals (3.2). Note that W jq [a; b] �W j1 [a; b].Theorem 3.19. Let 1 � p < 1, and q := p� (the conjugate exponent). There is a 1{1(linear) correspondence between the linear functionals� 2 (W k+1�jp [a; b])�; j = 0; 1; : : : ; k + 1which vanish on �k and the functionsK 2W jq [a; b]that satisfy (for j � 1) the boundary conditionsK(a) = DK(a) = � � � = Dj�1K(a) = 0; K(b) = DK(b) = � � � = Dj�1K(b) = 0which is given by �(f) = Z ba Dk+1f(t)K(t) dt; 8f 2W k+1p [a; b]; (3:20)or, equivalently,�(f) = (�1)j Z ba Dk+1�jf(t)DjK(t) dt; 8f 2W k+1�jp [a; b]: (3:21)12



Further, � 7! kKkLq[a;b] gives an equivalent norm on f� 2 (W k+1�jp [a; b])� : �(�k) = 0g.Proof: The proof is by (strong) induction on j and k.First we prove the result for j = 0 and all k. Let X = W k+1p [a; b], 1 � p <1, in Theorem2.2. By Lemma 2.11, Dk+1 : W k+1p [a; b] ! Lp[a; b] is a continuous linear map ontoY = Lp[a; b], which (by the open mapping theorem) is an open map. Thus, there is a 1{1correspondence between the � 2 (W k+1p [a; b])� that vanish on �k and the Q 2 (Lp[a; b])�given by (2.3). The standard representation for continuous linear functionals on Lp[a; b]as integration against Lq[a; b]{functions then gives (3.20) and (3.21). The equivalence ofnorms is (2.5). In fact, from the proof of (2.5) it follows that with the usual norm onW k+1p [a; b] these norms are equal (since kDk+1k = 1 and r = 1).Now suppose that the result is true for j � 1, where 0 � j� 1 � k. The induction hy-pothesis gives a 1{1 correspondence between those � 2 (W k�(j�1)p [a; b])� = (W k+1�jp [a; b])�that vanish on �k�1 and the functions w 2W j�1q [a; b] satisfying the boundary conditionsw(a) = Dw(a) = � � � = Dj�2w(a) = 0; w(b) = Dw(b) = � � � = Dj�2w(b) = 0; (3:22)which is given by �(f) = Z ba Dkf(t)w(t) dt; 8f 2W kp [a; b]; (3:23)or, equivalently,�(f) = (�1)j�1 Z ba Dk�(j�1)f(t)Dj�1w(t) dt; 8f 2W k�(j�1)p [a; b]: (3:24)Let K 2W jq [a; b] be the function de�ned by (2.14), which satis�es DK = �w, andK(a) := � Z aa w(�) d� = 0: (3:25)By (3.22) and (3.25), this K 2W jq [a; b] satis�es all the boundary conditions of the theoremexcept K(b) = 0. The linear functional � de�ned by (3.23) vanishes on �k if and only ifK(b) = Z ba w(t) = � �(�)k=k!� = 0:Since (3.24) can be rewritten as�(f) = (�1)j Z ba Dk+1�jf(t)DjK(t) dt; 8f 2W k+1�jp [a; b];this gives the 1{1 correspondence (3.21). Integrating (3.23) by parts gives the 1{1 corre-spondence (3.20).As before, the Peano kernelK above satis�es the moment and orthogonality conditionsas described by Lemma 2.15. The only statement of the Peano kernel theorem which strivesfor the generality of Sobolev spaces that the author is aware of is in the recent monograph[BHS93:p. 28].To summarise the classi�cation of this section, we now give a diagram showing the sub-spaces of (Ck+1[a; b])� considered, together with the smoothness class of the correspondingPeano kernels and the boundary conditions which they satisfy.13



Peano kernel classi�cation subspace diagramHere is a diagram showing subspaces X� � (Ck+1[a; b])�, the smoothness class of thecorresponding Peano kernels (for � 2 X� vanishing on �k), and the boundary conditions satis�edby the Peano kernels K (if any). Here 1 � p < 1, 1 � p1 < p2 < 1, with 1 < q � 1,1 < q2 < q1 � 1 the corresponding conjugate indices, and j = 0; 1; : : : ; k. All of the inclusionsindicated by " are strict.Subspaces of(Ck+1[a; b])� Smoothness classof Peano kernels Boundary conditions satis�ed bythe corresponding Peano kernels(W k+1p [a; b])� Lq[a; b]" "(Ck[a; b])� PK[a; b]"(W kp [a; b])�"(Ck�1[a; b])� W 1q [a; b]"PK1[a; b] �K(a) = 0K(b) = 0"... ..."(W k+1�jp2 [a; b])�"(W k+1�jp1 [a; b])�"(Ck�j [a; b])� W jq2 [a; b]"W jq1 [a; b]"PKj [a; b] )K(a) = � � � = Dj�1K(a) = 0K(b) = � � � = Dj�1K(b) = 0"(W k�jp2 [a; b])�"(W k�jp1 [a; b])� W j+1q2 [a; b]"W j+1q1 [a; b] �K(a) = � � � = DjK(a) = 0K(b) = � � � = DjK(b) = 0"... ..."(W 2p [a; b])�"(C1[a; b])� W k�1q [a; b]"PKk�1[a; b] �K(a) = � � � = Dk�2K(a) = 0K(b) = � � � = Dk�2K(b) = 0"(W 1p [a; b])�"(C[a; b])� W kq [a; b]"PKk[a; b] �K(a) = � � � = Dk�1K(a) = 0K(b) = � � � = Dk�1K(b) = 0"(Lp[a; b])� W k+1q [a; b] 	K(a) = � � � = DkK(a) = 0K(b) = � � � = DkK(b) = 014



4. Representations of the continuous duals of Cr[a; b] and W rp [a; b]In this section we brie
y indicate how the Peano kernel representations of Section 3can be used to represent the continuous dual X� ofX = Cr[a; b]; X = W rp [a; b]; r � 0; 1 � p <1:The basic argument is that if �0; : : : ; �k 2 X� are linearly independent over �k � X,i.e., there exists a (unique) linear projector onto �k of the formP = kXi=0 pi�i : X ! �k; (pi 2 �k);then the map I : X� ! IRk+1 �X� \Ann(�k) : � 7! �(�pi)ki=0; �� � � P � (4:1)is an isomorphism between Banach spaces (i.e., a linear bijection which is a homeomor-phism), and for short we writeX� �= IRk+1 �X� \Ann(�k):Here X� \ Ann(�k) denotes the closed subspace of X� which annihilates �k. It is easilyshown that I is a 1{1, onto, and continuous linear map between Banach spaces. Thecontinuity of I�1 follows from the open mapping theorem.First let X = Cr[a; b], and choose k � r � 0. Then(Cr[a; b])� �= IRk+1 � (Cr[a; b])� \ Ann(�k); (4:2)and using the representation for (Cr[a; b])� \Ann(�k) given by Theorem 3.3 one obtains:Theorem 4.3 (Representation of (Cr[a; b])�). Let�0; : : : ; �k 2 (Cr[a; b])�; k � r � 0;be linearly independent over �k, with pi 2 �k the dual polynomials, and P :=Pki=0 pi�i.Then each linear functional � 2 (Cr[a; b])� has a unique representation of the form�(f) = kXi=0 ci�i(f) + (�1)k�r�1 Z ba Drf(t) d(Dk�rK)(t); 8f 2 Cr[a; b]; (4:4)where cj 2 IR, K 2 PKk�r[a; b] (with Dk�rK 2 PK[a; b] above), and K satis�es (fork � r � 1) the boundary conditionsK(a) = � � � = Dk�r�1K(a) = 0; K(b) = � � � = Dk�r�1K(b) = 0:15



Further, k�k is equivalent tokXi=0 jcij+ Z ba jK(t)j dt = kXi=0 jcij+ kKkL1[a;b]: (4:5)In this representationci = �(pi); i = 0; : : : ; k;K(t) = 1k! (�� � � P ) �(� � t)k+� ; 8t 62 J����P;k;and (4.4) can be replaced by�(f) = kXi=0 ci�i(f) + Z ba Dk+1f(t)K(t) dt; (4:6)whenever f 2 Ck+1[a; b].Proof: Since �� � � P vanishes on �k, and(�� � � P )f = �(f)� kXi=0 �(pi)�i(f) = �(f)� kXi=0 ci�i(f);Theorem 3.3 can be applied to � � � � P to obtain (4.4) and (4.6). The equivalence ofnorms (4.5) follows from the isomorphism (4.2). Indeed, if Cr[a; b] is given the (equivalent)norm kfk := maxfj�i(f)j : i = 0; : : : ; k; kDrfkL1[a;b]g;then k�k is precisely (4.5) (cf Conway [C85:Ex. 5,p. 80]).The representation for (Cr[a; b])� that is obtained by instead using the representationof (Cr[a; b])� \ Ann(�k) given by (2.6), i.e.,(Ck+1[a; b])� �= IRk+1 �NBV[a; b];is well known (see, e.g., [C85:Ex. 6,p. 80] or [S63:p. 139]).In a similar way, by choosing X =W rp [a; b], 1 � p <1, k+ 1 � r � 0, it follows that(W rp [a; b])� �= IRk+1 � (W rp [a; b])� \Ann(�k); (4:7)and the representation for (W rp [a; b])� \Ann(�k) of Theorem 3.19 gives:16



Theorem 4.8 (Representation of (W rp [a; b])�). Let�0; : : : ; �k 2 (W rp [a; b])�; 1 � p <1; k + 1 � r � 0;be linearly independent over �k, with pi 2 �k the dual polynomials, and P :=Pki=0 pi�i.Then each linear functional � 2 (W rp [a; b])� has a unique representation of the form�(f) = kXi=0 ci�i(f) + (�1)k+1�r Z ba Drf(t)Dk+1�rK(t) dt; 8f 2W rp [a; b]; (4:9)where cj 2 IR, and K 2W k+1�rq [a; b] (q := p�) satis�es (for k + 1� r � 1)K(a) = � � � = Dk�rK(a) = 0; K(b) = � � � = Dk�rK(b) = 0:Further, k�k is equivalent to  kXi=0 jcijq + Z ba jK(t)jq dt!1=q : (4:10)In this representation ci = �(pi); i = 0; : : : ; k;and K is the Peano kernel for �� � � P (in terms of Dk+1).Proof: As for Theorem 4.8, but using (4.7). If W rp [a; b] is given the (equivalent) normkfk :=  kXi=0 j�i(f)jp + Z ba jDrf(t)jp dt!1=p ;then k�k is precisely (4.10) (cf [C85:Ex. 4, p. 80]).Taking r = k + 1 in Theorem 4.8 gives(W k+1p [a; b])� �= IRk+1 � Lq[a; b]:In Adams [A75:Th. 3.8, p. 48] there is a representation of (W rp (
))�, for 
 a domain inIRn. This nonconstructive result is of a di�erent nature to that of (4.9).Concluding remarksThe use of distribution theory allows additional statements about the smoothness ofPeano kernels to be made. For instance, if (c; d) � (a; b) does not intersect the support of�, then Kj(c;d) is a polynomial of degree � k. The techniques developed here could also beused to classify the Peano kernels for other spaces X, in particular those of the form Y j ,Y � L1[a; b], together with the corresponding representations of (Y j)� (cf this section).17
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